When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.

  3. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  4. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  5. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Skewness is a descriptive statistic that can be used in conjunction with the histogram and the normal quantile plot to characterize the data or distribution. Skewness indicates the direction and relative magnitude of a distribution's deviation from the normal distribution.

  6. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    With the factor 2 replaced by approximately 2.59, the Freedman–Diaconis rule asymptotically matches Scott's Rule for data sampled from a normal distribution. Another approach is to use Sturges's rule : use a bin width so that there are about 1 + log 2 ⁡ n {\displaystyle 1+\log _{2}n} non-empty bins, however this approach is not recommended ...

  7. Statistical graphics - Wikipedia

    en.wikipedia.org/wiki/Statistical_graphics

    Graphical statistical methods have four objectives: [2] The exploration of the content of a data set; The use to find structure in data; Checking assumptions in statistical models; Communicate the results of an analysis. If one is not using statistical graphics, then one is forfeiting insight into one or more aspects of the underlying structure ...

  8. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [4]

  9. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]