Ad
related to: strength standard calculator for steel beam height and weight
Search results
Results From The WOW.Com Content Network
ASTM A992 steel is a structural steel alloy often used in the US for steel wide-flange and I beams. Like other carbon steels, the density of ASTM A992 steel is approximately 7850 kg/m 3 (0.2836 lb/in 3). ASTM A992 steel has the following minimum mechanical properties, according to ASTM specification A992/A992M.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
In Canada, steel I-beams are now commonly specified using the depth and weight of the beam in metric terms. For example, a "W250x33" beam is approximately 250 millimetres (9.8 in) in depth (height of the I-beam from the outer face of one flange to the outer face of the other flange) and weighs approximately 33 kg/m (22 lb/ft; 67 lb/yd). [8]
Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied. By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
The beam is originally straight, and any taper is slight; The beam experiences only linear elastic deformation; The beam is slender (its length to height ratio is greater than 10) Only small deflections are considered (max deflection less than 1/10 of the span).
The mean strength can be computed from this distribution and, as it turns out, its plot is identical with the plot of Eq. 5 seen in Fig. 2g. The point of deviation from the Weibull asymptote is determined by the location of the grafting point on the strength distribution of one RVE (Fig. 2g).
The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.