When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Determining the number of clusters in a data set, a quantity often labelled k as in the k -means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k -means, k -medoids and expectation–maximization ...

  4. Microarray analysis techniques - Wikipedia

    en.wikipedia.org/wiki/Microarray_analysis_techniques

    K-means clustering algorithm and some of its variants (including k-medoids) have been shown to produce good results for gene expression data (at least better than hierarchical clustering methods). Empirical comparisons of k-means, k-medoids, hierarchical methods and, different distance measures can be found in the literature. [18] [19]

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k -means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  6. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical ...

  7. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Calinski–Harabasz index. The Calinski–Harabasz index (CHI), also known as the Variance Ratio Criterion (VRC), is a metric for evaluating clustering algorithms, introduced by Tadeusz CaliƄski and Jerzy Harabasz in 1974. [1] It is an internal evaluation metric, where the assessment of the clustering quality is based solely on the dataset and ...

  8. Canopy clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/Canopy_clustering_algorithm

    The canopy clustering algorithm is an unsupervised pre- clustering algorithm introduced by Andrew McCallum, Kamal Nigam and Lyle Ungar in 2000. [1] It is often used as preprocessing step for the K-means algorithm or the hierarchical clustering algorithm. It is intended to speed up clustering operations on large data sets, where using another ...

  9. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    The k-medoids problem is a clustering problem similar to k -means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [1] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points labeled ...