When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  4. File:BERT on sentence classification.svg - Wikipedia

    en.wikipedia.org/wiki/File:BERT_on_sentence...

    BERT (language model) Metadata. This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.

  5. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    BERT pioneered an approach involving the use of a dedicated [CLS] token prepended to the beginning of each sentence inputted into the model; the final hidden state vector of this token encodes information about the sentence and can be fine-tuned for use in sentence classification tasks. In practice however, BERT's sentence embedding with the ...

  6. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model). Also in 2018, OpenAI published Improving Language Understanding by Generative Pre-Training, which introduced GPT-1, the first in its GPT series. [29]

  7. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  8. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    As in the case of BERT, it uses a special token <CLS> in the input side, and the corresponding output vector is used as the only input of the final output MLP head. The special token is an architectural hack to allow the model to compress all information relevant for predicting the image label into one vector. Animation of ViT.

  9. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Google's Bidirectional Encoder Representations from Transformers (BERT) model is used to better understand the context of search queries. [15] OpenAI's GPT-3 is an autoregressive language model that can be used in language processing. It can be used to translate texts or answer questions, among other things. [16]