When.com Web Search

  1. Ad

    related to: product rule for multiple terms calculator calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an ...

  5. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...

  7. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    If and are two -forms (functions), then from the third property for the quantity (), which is simply (), the familiar product rule () = + is recovered. The third property can be generalised, for instance, if α {\displaystyle \alpha } is a k {\displaystyle k} -form, β {\displaystyle \beta } is an l {\displaystyle l} -form and γ {\displaystyle ...

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  9. Formal derivative - Wikipedia

    en.wikipedia.org/wiki/Formal_derivative

    As in calculus, the derivative detects multiple roots. If R is a field then R[x] is a Euclidean domain, and in this situation we can define multiplicity of roots; for every polynomial f(x) in R[x] and every element r of R, there exists a nonnegative integer m r and a polynomial g(x) such that = ()