Search results
Results From The WOW.Com Content Network
Note that a 4-wire instrument has a power-supply input separate from the current loop. Panel mount displays and chart recorders are commonly termed "indicator devices" or "process monitors". Several passive indicator devices may be connected in series, but a loop must have only one transmitter device and only one power source (active device).
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces. An outline of key instrumentation is shown on Process Flow Diagrams (PFD) which indicate the principal equipment and the flow of fluids in the plant.
The DCS sends the setpoint required by the process to the controller which instructs a valve to operate so that the process reaches and stays at the desired setpoint. (see 4–20 mA schematic for example). Large oil refineries and chemical plants have several thousand I/O points and employ very large DCS.
PID controllers work best when the loop to be controlled is linear and symmetric. Thus, their performance in non-linear and asymmetric systems is degraded. A non-linear valve, for instance, in a flow control application, will result in variable loop sensitivity, requiring dampened action to prevent instability.
Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop. [4]
A digital current loop uses the absence of current for high (space or break), and the presence of current in the loop for low (mark). [1] This is done to ensure that on normal conditions there is always current flowing and in the event of a line being cut the flow stops indefinitely, immediately raising the alarm of the event usually as the heavy noise of the teleprinter not being synchronized ...