When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    A sample of thorium. The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232 Th, ... The thermal neutron absorption cross section ...

  3. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  4. Nuclear fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fuel_cycle

    In the thorium fuel cycle thorium-232 absorbs a neutron in either a fast or thermal reactor. The thorium-233 beta decays to protactinium-233 and then to uranium-233, which in turn is used as fuel. Hence, like uranium-238, thorium-232 is a fertile material.

  5. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    In the thorium cycle, thorium-232 breeds by converting first to protactinium-233, which then decays to uranium-233. If the protactinium remains in the reactor, small amounts of uranium-232 are also produced, which has the strong gamma emitter thallium-208 in its decay chain. Similar to uranium-fueled designs, the longer the fuel and fertile ...

  6. Liquid fluoride thorium reactor - Wikipedia

    en.wikipedia.org/wiki/Liquid_fluoride_thorium...

    The FUJI MSR was a design for a 100 to 200 MWe molten-salt-fueled thorium fuel cycle thermal breeder reactor, using technology similar to the Oak Ridge National Laboratory Reactor Experiment. It was being developed by a consortium including members from Japan, the United States, and Russia.

  7. Molten-salt reactor - Wikipedia

    en.wikipedia.org/wiki/Molten-salt_reactor

    Thermal reactors typically employ a moderator (usually graphite) to slow the neutrons down and moderate temperature. They can accept a variety of fuels (low-enriched uranium, thorium, depleted uranium, waste products) [23] and coolants (fluoride, chloride, lithium, beryllium, mixed). Fuel cycle can be either closed or once-through. [24]

  8. Uranium-233 - Wikipedia

    en.wikipedia.org/wiki/Uranium-233

    or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. [2] It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

  9. Thorium-232 - Wikipedia

    en.wikipedia.org/wiki/Thorium-232

    Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has ...