Search results
Results From The WOW.Com Content Network
The relation between local and global truncation errors is slightly different from in the simpler setting of one-step methods. For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in ...
Example A: Find the truncation in calculating the first derivative of () = at = using a step size of = Solution: The first derivative of () = is ′ =, and at = ...
This differs from the (forward) Euler method in that the forward method uses (,) in place of (+, +). The backward Euler method is an implicit method: the new approximation y k + 1 {\displaystyle y_{k+1}} appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown y k + 1 {\displaystyle y_{k+1}} .
The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with a numerical dissipation term of 1/2.
The condition number of a problem is the ratio of the relative change in the solution to the relative change in the input. [3] A problem is well-conditioned if small relative changes in input result in small relative changes in the solution.
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...