Search results
Results From The WOW.Com Content Network
It is also the symmetry of a pyritohedron, which is extremely similar to the cube described, with each rectangle replaced by a pentagon with one symmetry axis and 4 equal sides and 1 different side (the one corresponding to the line segment dividing the cube's face); i.e., the cube's faces bulge out at the dividing line and become narrower there.
The axis of symmetry of a two-dimensional figure is a line such that, if a perpendicular is constructed, any two points lying on the perpendicular at equal distances from the axis of symmetry are identical. Another way to think about it is that if the shape were to be folded in half over the axis, the two halves would be identical as mirror ...
Determine the symmetry of the curve. If the exponent of x is always even in the equation of the curve then the y-axis is an axis of symmetry for the curve. Similarly, if the exponent of y is always even in the equation of the curve then the x-axis is an axis of symmetry for the curve.
The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point where the parabola intersects its axis of symmetry is called the "vertex" and is the point where the parabola is most sharply curved. The distance between the vertex ...
The direction of a symmetry element corresponds to its position in the Hermann–Mauguin symbol. If a rotation axis n and a mirror plane m have the same direction, then they are denoted as a fraction n / m or n /m. If two or more axes have the same direction, the axis with higher symmetry is shown.
A "1-fold" symmetry is no symmetry (all objects look alike after a rotation of 360°). The notation for n-fold symmetry is C n or simply n. The actual symmetry group is specified by the point or axis of symmetry, together with the n. For each point or axis of symmetry, the abstract group type is cyclic group of order n, Z n.
In two dimensions, every figure which possesses an axis of symmetry is achiral, and it can be shown that every bounded achiral figure must have an axis of symmetry. (An axis of symmetry of a figure is a line , such that is invariant under the mapping (,) (,), when is chosen to be the -axis of the coordinate system.)
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.