When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    It is the longest side of any such triangle; the two other shorter sides of such a triangle are called catheti or legs. The length of the hypotenuse can be found using the Pythagorean theorem , which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the two legs.

  4. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The diagonals of a square are (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, [1] was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles.

  5. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 4 considers special classes of Pythagorean triangles, including those with sides in arithmetic progression, nearly-isosceles triangles, and the relation between nearly-isosceles triangles and square triangular numbers. The next two chapters characterize the numbers that can appear in Pythagorean triples, and chapters 7–9 find sets of ...

  6. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  7. Pythagoras - Wikipedia

    en.wikipedia.org/wiki/Pythagoras

    The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). Although Pythagoras is most famous today for his alleged mathematical discoveries, [132] [207] classical historians dispute whether he himself ever actually made any significant contributions to the field.

  8. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    The respective lengths a, b, and c of the sides of these three polygons satisfy the equation a 2 + b 2 = c 2, so line segments with these lengths form a right triangle (by the converse of the Pythagorean theorem). The ratio of the side length of the hexagon to the decagon is the golden ratio, so this triangle forms half of a golden rectangle. [8]

  9. Berlin Papyrus 6619 - Wikipedia

    en.wikipedia.org/wiki/Berlin_Papyrus_6619

    The Berlin Papyrus contains two problems, the first stated as "the area of a square of 100 is equal to that of two smaller squares. The side of one is ½ + ¼ the side of the other." [ 7 ] The interest in the question may suggest some knowledge of the Pythagorean theorem , though the papyrus only shows a straightforward solution to a single ...