Search results
Results From The WOW.Com Content Network
[1] It's also important to apply feature scaling if regularization is used as part of the loss function (so that coefficients are penalized appropriately). Empirically, feature scaling can improve the convergence speed of stochastic gradient descent. In support vector machines, [2] it can reduce the time to find support vectors. Feature scaling ...
Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.
scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation, geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection, and more. [3]
[5] [6] It is free and open-source software released under the Apache License 2.0. It was developed by the Google Brain team for Google's internal use in research and production. [7] [8] [9] The initial version was released under the Apache License 2.0 in 2015. [1] [10] Google released an updated version, TensorFlow 2.0, in September 2019. [11]
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis.In particular, it offers data structures and operations for manipulating numerical tables and time series.
PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model. In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors.