When.com Web Search

  1. Ad

    related to: directed vs weighted graph examples for kids

Search results

  1. Results From The WOW.Com Content Network
  2. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    A directed graph is weakly connected (or just connected [9]) if the undirected underlying graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph. A directed graph is strongly connected or strong if it contains a directed path from x to y (and from y to x ) for every pair of vertices ( x , y ) .

  3. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example, if a graph represents a road network, the weights could represent the length of each road.

  5. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A directed walk is a finite or infinite sequence of edges directed in the same direction which joins a sequence of vertices. [2]Let G = (V, E, ϕ) be a directed graph. A finite directed walk is a sequence of edges (e 1, e 2, …, e n − 1) for which there is a sequence of vertices (v 1, v 2, …, v n) such that ϕ(e i) = (v i, v i + 1) for i = 1, 2, …, n − 1.

  6. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  7. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...

  8. Betweenness centrality - Wikipedia

    en.wikipedia.org/wiki/Betweenness_centrality

    For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices, that is, there exists at least one path such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for ...

  9. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The weighted shortest-path distance generalises the geodesic distance to weighted graphs. In this case it is assumed that the weight of an edge represents its length or, for complex networks the cost of the interaction, and the weighted shortest-path distance d W (u, v) is the minimum sum of weights across all the paths connecting u and v.