Search results
Results From The WOW.Com Content Network
The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations. The symbol i used in the body of the table denotes the imaginary unit: i 2 = −1. Used in a column heading, it denotes the operation of inversion.
Every finite-dimensional unitary representation on a Hilbert space is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by ...
Binary polyhedral groups are discrete subgroups of a Spin group, and under a representation of the spin group act on a vector space, and may stabilize a polyhedron in this representation – under the map Spin(3) → SO(3) they act on the same polyhedron that the underlying (non-binary) group acts on, while under spin representations or other ...
The representation is called an irreducible representation, if these two are the only subrepresentations. Some authors also call these representations simple, given that they are precisely the simple modules over the group algebra []. Schur's lemma puts a strong constraint on maps between irreducible representations.
For n = 3, 4 there are two additional one-dimensional irreducible representations, corresponding to maps to the cyclic group of order 3: A 3 ≅ C 3 and A 4 → A 4 /V ≅ C 3. For n ≥ 7, there is just one irreducible representation of degree n − 1, and this is the smallest degree of a non-trivial irreducible representation.
Thus, to summarize, the irreducible projective representations of SO(3) are in one-to-one correspondence with the irreducible ordinary representations of its Lie algebra so(3). The two-dimensional "spin 1/2" representation of the Lie algebra so(3), for example, does not correspond to an ordinary (single-valued) representation of the group SO(3).
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
This is the double cover of SE(2) (see projective representation). We have two cases, one where irreps are described by an integral multiple of 1 / 2 called the helicity, and the other called the "continuous spin" representation. For the third case The only finite-dimensional unitary solution is the trivial representation called the vacuum.