Search results
Results From The WOW.Com Content Network
Recombinant DNA is the general name for a piece of DNA that has been created by combining two or more fragments from different sources. Recombinant DNA is possible because DNA molecules from all organisms share the same chemical structure, differing only in the nucleotide sequence.
In genetic engineering, recombination can also refer to artificial and deliberate recombination of disparate pieces of DNA, often from different organisms, creating what is called recombinant DNA. A prime example of such a use of genetic recombination is gene targeting, which can be used to add, delete or otherwise change an organism's genes.
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
NCO recombinants are thought to occur primarily by the Synthesis Dependent Strand Annealing (SDSA) model, illustrated on the left, above. Most recombination events appear to be the SDSA type. Synthesis-dependent strand annealing (SDSA) is a major mechanism of homology-directed repair of DNA double-strand breaks (DSBs).
DNA recombination may refer to: Genetic recombination, a natural aspect of DNA repair mechanisms; Homologous recombination, one common form of recombination in eukaryotes; Recombinant DNA technology, in which genetic changes are induced in the laboratory using features of the above mechanisms
Homologous recombination that occurs during DNA repair tends to result in non-crossover products, in effect restoring the damaged DNA molecule as it existed before the double-strand break. Homologous recombination is conserved across all three domains of life as well as DNA and RNA viruses , suggesting that it is a nearly universal biological ...
DNA sequences that carry the instructions to make proteins are referred to as coding sequences. The proportion of the genome occupied by coding sequences varies widely. A larger genome does not necessarily contain more genes, and the proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes. [31]
Recombineering (recombination-mediated genetic engineering) [1] is a genetic and molecular biology technique based on homologous recombination systems, as opposed to the older/more common method of using restriction enzymes and ligases to combine DNA sequences in a specified order.