When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    This is a corollary of Bretschneider's formula for the general quadrilateral, since opposite angles are supplementary in the cyclic case. If also d = 0 , the cyclic quadrilateral becomes a triangle and the formula is reduced to Heron's formula .

  3. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This more general formula is known as Bretschneider's formula. It is a property of cyclic quadrilaterals (and ultimately of inscribed angles) that opposite angles of a quadrilateral sum to 180°. Consequently, in the case of an inscribed quadrilateral, θ is 90°, whence the term

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  5. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  6. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [15] [16] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [17] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...

  7. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...

  8. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.