When.com Web Search

  1. Ad

    related to: inverse matrix formula for 3x3 square labels pdf file download sample

Search results

  1. Results From The WOW.Com Content Network
  2. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix derived by applying an elementary row operation to the identity matrix. Equivalent matrix: A matrix that can be derived from another matrix through a sequence of elementary row or column operations. Frobenius matrix: A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.

  5. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.

  6. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    If the determinant and inverse of A are already known, the formula provides a numerically cheap way to compute the determinant of A corrected by the matrix uv T.The computation is relatively cheap because the determinant of A + uv T does not have to be computed from scratch (which in general is expensive).

  7. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involutory matrix which is also symmetric is an orthogonal matrix, and thus represents an isometry (a linear transformation which preserves Euclidean distance). Conversely every orthogonal involutory matrix is symmetric. [3] As a special case of this, every reflection and 180° rotation matrix is involutory.

  8. Frobenius matrix - Wikipedia

    en.wikipedia.org/wiki/Frobenius_matrix

    A Frobenius matrix is a special kind of square matrix from numerical analysis. A matrix is a Frobenius matrix if it has the following three properties: all entries on the main diagonal are ones; the entries below the main diagonal of at most one column are arbitrary; every other entry is zero; The following matrix is an example.

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For the cases where ⁠ ⁠ has full row or column rank, and the inverse of the correlation matrix (⁠ ⁠ for ⁠ ⁠ with full row rank or ⁠ ⁠ for full column rank) is already known, the pseudoinverse for matrices related to ⁠ ⁠ can be computed by applying the Sherman–Morrison–Woodbury formula to update the inverse of the ...