Search results
Results From The WOW.Com Content Network
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...
According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...
The Beltrami identity, named after Eugenio Beltrami, is a special case of the Euler–Lagrange equation in the calculus of variations. The Euler–Lagrange equation serves to extremize action functionals of the form [] = [, (), ′ ()],
The fundamental lemma of the calculus of variations is typically used to transform this weak formulation into the strong formulation (differential equation), free of the integration with arbitrary function. The proof usually exploits the possibility to choose δf concentrated on an interval on which f keeps sign (positive or negative). Several ...
Euler's identity is a direct result of Euler's formula, published in his monumental 1748 work of mathematical analysis, Introductio in analysin infinitorum, [16] but it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.
To simplify the notation, let = ˙ and define a collection of n 2 functions Φ j i by =. Theorem. (Douglas 1941) There exists a Lagrangian L : [0, T] × TM → R such that the equations (E) are its Euler–Lagrange equations if and only if there exists a non-singular symmetric matrix g with entries g ij depending on both u and v satisfying the following three Helmholtz conditions:
The main points of the proof can be made clearer by considering a one-dimensional system with a Lagrangian (, ˙, ¨).The Euler–Lagrange equation is ˙ + ¨ = Non-degeneracy of means that the canonical coordinates can be expressed in terms of the derivatives of and vice versa.
In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory.