When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    Thales' theorem may be used to construct the tangent lines to a point P external to the circle C: A circle is drawn centered on the midpoint of the line segment OP , having diameter OP , where O is again the center of the circle C .

  4. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  5. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    Monge's theorem states that the three such points given by the three pairs of circles always lie in a straight line. In the case of two of the circles being of equal size, the two external tangent lines are parallel. In this case Monge's theorem asserts that the other two intersection points must lie on a line parallel to those two external ...

  6. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    They are all named for Frederick Soddy, who rediscovered Descartes' theorem on the radii of mutually tangent quadruples of circles. Any triangle has three externally tangent circles centered at its vertices. Two more circles, its Soddy circles, are tangent to the three circles centered at the vertices; their centers are called Soddy centers.

  7. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    Thus, as the solution circle swells, the internally tangent given circles must swell in tandem, whereas the externally tangent given circles must shrink, to maintain their tangencies. Viète used this approach to shrink one of the given circles to a point, thus reducing the problem to a simpler, already solved case.

  8. Casey's theorem - Wikipedia

    en.wikipedia.org/wiki/Casey's_theorem

    If , are tangent from different sides of (one in and one out), is the length of the interior common tangent. The converse of Casey's theorem is also true. [4] That is, if equality holds, the circles are tangent to a common circle.

  9. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The nine-point circle is tangent to the incircle and excircles. In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: [28] [29] The midpoint of each side of the triangle; The foot ...