Search results
Results From The WOW.Com Content Network
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the ...
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series. It is named for Leopold Kronecker.
delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2) displacement (usually small) meter (m) Dirac delta function: Kronecker delta (e.g ) epsilon: permittivity: farad per meter (F/m) strain: unitless
δ ij is the Kronecker delta. μ and λ are proportionality constants associated with the assumption that stress depends on strain linearly; μ is called the first coefficient of viscosity or shear viscosity (usually just called "viscosity") and λ is the second coefficient of viscosity or volume viscosity (and it is related to bulk viscosity).
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
In mathematics, Kronecker's theorem is a theorem about diophantine approximation, introduced by Leopold Kronecker . Kronecker's approximation theorem had been firstly proved by L. Kronecker in the end of the 19th century. It has been now revealed to relate to the idea of n-torus and Mahler measure since the later half of the 20th century. In ...
This is known as triple product expansion, or Lagrange's formula, [2] [3] although the latter name is also used for several other formulas. Its right hand side can be remembered by using the mnemonic "ACB − ABC", provided one keeps in mind which vectors are dotted together.