When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjunction elimination - Wikipedia

    en.wikipedia.org/wiki/Conjunction_elimination

    In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.

  3. DPLL algorithm - Wikipedia

    en.wikipedia.org/wiki/DPLL_algorithm

    The basic backtracking algorithm runs by choosing a literal, assigning a truth value to it, simplifying the formula and then recursively checking if the simplified formula is satisfiable; if this is the case, the original formula is satisfiable; otherwise, the same recursive check is done assuming the opposite truth value.

  4. Exportation (logic) - Wikipedia

    en.wikipedia.org/wiki/Exportation_(logic)

    The exportation rule may be written in sequent notation: (()) (())where is a metalogical symbol meaning that (()) is a syntactic equivalent of (()) in some logical system; . or in rule form:

  5. Prenex normal form - Wikipedia

    en.wikipedia.org/wiki/Prenex_normal_form

    In intuitionistic logic, it is not true that every formula is logically equivalent to a prenex formula. The negation connective is one obstacle, but not the only one. The implication operator is also treated differently in intuitionistic logic than classical logic; in intuitionistic logic, it is not definable using disjunction and negation.

  6. Z3 Theorem Prover - Wikipedia

    en.wikipedia.org/wiki/Z3_Theorem_Prover

    In this example propositional logic assertions are checked using functions to represent the propositions a and b. The following Z3 script checks to see if a ∧ b ¯ ≡ a ¯ ∨ b ¯ {\displaystyle {\overline {a\land b}}\equiv {\overline {a}}\lor {\overline {b}}} :

  7. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [b] [6] [7] [8] Sometimes, it is called first-order propositional logic [9] to contrast it with System F, but it should not be confused with ...

  8. List of axiomatic systems in logic - Wikipedia

    en.wikipedia.org/wiki/List_of_axiomatic_systems...

    Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...

  9. Automated theorem proving - Wikipedia

    en.wikipedia.org/wiki/Automated_theorem_proving

    Depending on the underlying logic, the problem of deciding the validity of a formula varies from trivial to impossible. For the common case of propositional logic, the problem is decidable but co-NP-complete, and hence only exponential-time algorithms are believed to exist for general proof tasks.