Ad
related to: when to use discriminant formula calculator with solution
Search results
Results From The WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
He understood the importance of the discriminant of the cubic equation to find algebraic solutions to certain types of cubic equations. [18] In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20.
The method of reduction of order is used to obtain a second linearly independent solution to this differential equation using our one known solution. To find a second solution we take as a guess y 2 ( x ) = v ( x ) y 1 ( x ) {\displaystyle y_{2}(x)=v(x)y_{1}(x)} where v ( x ) {\displaystyle v(x)} is an unknown function to be determined.
Pierre Fermat stated that if p is an odd prime then the equation = + has a solution iff (), and he made similar statement about the equations = +, = +, = and =. x 2 + y 2 , x 2 + 2 y 2 , x 2 − 3 y 2 {\displaystyle x^{2}+y^{2},x^{2}+2y^{2},x^{2}-3y^{2}} and so on are quadratic forms, and the theory of quadratic forms gives a unified way of ...
This formula handles repeated roots without problem. Ferrari was the first to discover one of these labyrinthine solutions [citation needed]. The equation which he solved was + + = which was already in depressed form. It has a pair of solutions which can be found with the set of formulas shown above.
In statistics, kernel Fisher discriminant analysis (KFD), [1] also known as generalized discriminant analysis [2] and kernel discriminant analysis, [3] is a kernelized version of linear discriminant analysis (LDA). It is named after Ronald Fisher.