When.com Web Search

  1. Ad

    related to: when to use discriminant formula calculator with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...

  4. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    He understood the importance of the discriminant of the cubic equation to find algebraic solutions to certain types of cubic equations. [18] In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20.

  6. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    The method of reduction of order is used to obtain a second linearly independent solution to this differential equation using our one known solution. To find a second solution we take as a guess y 2 ( x ) = v ( x ) y 1 ( x ) {\displaystyle y_{2}(x)=v(x)y_{1}(x)} where v ( x ) {\displaystyle v(x)} is an unknown function to be determined.

  7. Binary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Binary_quadratic_form

    Pierre Fermat stated that if p is an odd prime then the equation = + has a solution iff (), and he made similar statement about the equations = +, = +, = and =. x 2 + y 2 , x 2 + 2 y 2 , x 2 − 3 y 2 {\displaystyle x^{2}+y^{2},x^{2}+2y^{2},x^{2}-3y^{2}} and so on are quadratic forms, and the theory of quadratic forms gives a unified way of ...

  8. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This formula handles repeated roots without problem. Ferrari was the first to discover one of these labyrinthine solutions [citation needed]. The equation which he solved was + + = which was already in depressed form. It has a pair of solutions which can be found with the set of formulas shown above.

  9. Kernel Fisher discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_Fisher_Discriminant...

    In statistics, kernel Fisher discriminant analysis (KFD), [1] also known as generalized discriminant analysis [2] and kernel discriminant analysis, [3] is a kernelized version of linear discriminant analysis (LDA). It is named after Ronald Fisher.