Search results
Results From The WOW.Com Content Network
Zipf's law can be visuallized by plotting the item frequency data on a log-log graph, with the axes being the logarithm of rank order, and logarithm of frequency. The data conform to Zipf's law with exponent s to the extent that the plot approximates a linear (more precisely, affine ) function with slope −s .
The JND for tone is dependent on the tone's frequency content. Below 500 Hz, the JND is about 3 Hz for sine waves; above 1000 Hz, the JND for sine waves is about 0.6% (about 10 cents). [8] The JND is typically tested by playing two tones in quick succession with the listener asked if there was a difference in their pitches. [9]
Reduce high-frequency signal components with a digital lowpass filter. Decimate the filtered signal by M; that is, keep only every M th sample. Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses ...
If both and are positive, the output will resemble a low pass filter, with the high frequency part of the noise decreased. If φ 1 {\displaystyle \varphi _{1}} is positive while φ 2 {\displaystyle \varphi _{2}} is negative, then the process favors changes in sign between terms of the process.
A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:
Music, for instance, may contain high-frequency components that are inaudible to humans. If a piece of music is sampled at 32,000 samples per second (Hz), any frequency components at or above 16,000 Hz (the Nyquist frequency for this sampling rate) will cause aliasing when the music is reproduced by a digital-to-analog converter (DAC). The high ...
The highest frequency in the spectrum is half the width of the entire spectrum. The width of the steadily-increasing pink shading is equal to the sample-rate. When it encompasses the entire frequency spectrum it is twice as large as the highest frequency, and that is when the reconstructed waveform matches the sampled one.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...