Search results
Results From The WOW.Com Content Network
[4]: 23–24 The pair held practice sessions, in which the problems were put to university students and worked through as a class (with some of the representative problems solved by the teacher, and the harder problems set as homework). They went through portions of the book at a rate of about one chapter a semester.
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]
In mathematics, Meixner polynomials (also called discrete Laguerre polynomials) are a family of discrete orthogonal polynomials introduced by Josef Meixner . They are given in terms of binomial coefficients and the (rising) Pochhammer symbol by
Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x 2 + ax + b with a and b real and a 2 − 4b < 0 (which is the same thing as saying that the polynomial x 2 + ax + b has no real roots).
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.
After computing the GCD of the polynomial and its derivative, further GCD computations provide the complete square-free factorization of the polynomial, which is a factorization = = where, for each i, the polynomial f i either is 1 if f does not have any root of multiplicity i or is a square-free polynomial (that is a polynomial without ...
The Hilbert polynomial is a numerical polynomial, since the dimensions are integers, but the polynomial almost never has integer coefficients (Schenck 2003, pp. 41). All these definitions may be extended to finitely generated graded modules over S , with the only difference that a factor t m appears in the Hilbert series, where m is the minimal ...