Search results
Results From The WOW.Com Content Network
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
Examples include Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus and Circorrhegma dodecahedra; the shapes of these creatures are indicated by their names. [5] The outer protein shells of many viruses form regular polyhedra. For example, HIV is enclosed in a regular icosahedron, as is the head of a typical myovirus. [6] [7]
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [3]. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as ...
In all of these definitions, a polyhedron is typically understood as a three-dimensional example of the more general polytope in any number of dimensions. For example, a polygon has a two-dimensional body and no faces, while a 4-polytope has a four-dimensional body and an additional set of three-dimensional "cells". However, some of the ...
Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.
The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex-, edge-, and face-transitive (i.e. isogonal, isotoxal, and isohedral). A form that is isohedral, has regular vertices, and is also edge-transitive (i.e. isotoxal) is said to be a quasiregular dual.
Pay special attention to any splatters or stuck-on food, applying slightly more pressure if needed. Clean the turntable separately on a flat surface, using the same gentle circular motion.
If a simplicial polyhedron (one with all faces triangles) has all vertex degrees between four and six (inclusive) then it has an ideal representation, but the triakis tetrahedron is simplicial and non-ideal, and the 4-regular non-ideal example above shows that for non-simplicial polyhedra, having all degrees in this range does not guarantee an ...