Search results
Results From The WOW.Com Content Network
3 Gradient, divergence, Laplace–Beltrami operator. 4 Kulkarni–Nomizu product. 5 In an inertial frame. 6 Conformal change. Toggle Conformal change subsection.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
Divergence: The divergence of the vector field A is a scalar, which is symbolically expressed by the dot product of ∇ and the vector A, = + + = (,,) = ∇ 2 φ ...
More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region enclosed by the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks ...
For premium support please call: 800-290-4726 more ways to reach us more ways to reach us
The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is x 2 {\displaystyle x^{2}} , while for the relative entropy the generator is the negative entropy x log x ...
This cheat sheet is the aftermath of hours upon hours of research on all of the teams in this year’s tournament field. I’ve listed each teams’ win and loss record, their against the spread totals, and their record in the last ten games. Also included are the three leading high scorers along with