Search results
Results From The WOW.Com Content Network
A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.
Pages for logged out editors learn more. Contributions; Talk; Bounded operators
A T ∈ L(H) is a Fredholm operator if and only if T is invertible modulo compact perturbation, i.e. TS = I + C 1 and ST = I + C 2 for some bounded operator S and compact operators C 1 and C 2. In other words, an operator T ∈ L(H) is Fredholm, in the classical sense, if and only if its projection in the Calkin algebra is invertible.
In operator theory, a dilation of an operator T on a Hilbert space H is an operator on a larger Hilbert space K, whose restriction to H composed with the orthogonal projection onto H is T. More formally, let T be a bounded operator on some Hilbert space H, and H be a subspace of a larger Hilbert space H' . A bounded operator V on H' is a ...
Since the graph of T is closed, the proof reduces to the case when : is a bounded operator between Banach spaces. Now, factors as / .Dually, ′ is ′ () ′ ′ (/ ) ′ ′.
The first inequality (that is, ‖ ‖ < for all ) states that the functionals in are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals ‖ ‖ (,) = ‖ ‖, ‖ ‖ and if is not the trivial vector space (or if the supremum is taken over [,] rather than [,]) then closed unit ball can be replaced with the unit sphere
In mathematics, and specifically in operator theory, a positive-definite function on a group relates the notions of positivity, in the context of Hilbert spaces, and algebraic groups. It can be viewed as a particular type of positive-definite kernel where the underlying set has the additional group structure.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...