When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    The composition of surjective functions is always surjective: If f and g are both surjective, and the codomain of g is equal to the domain of f, then f o g is surjective. Conversely, if f o g is surjective, then f is surjective (but g, the function applied first, need not be).

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function is surjective or onto if each element of the codomain is mapped to by at least one element of the domain. In other words, each element of the codomain has a non-empty preimage. Equivalently, a function is surjective if its image is equal to its codomain. A surjective function is a surjection. [1] The formal definition is the following.

  4. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.

  5. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    For some functions, the image and the codomain coincide; these functions are called surjective or onto. For example, consider the function () =, which inputs a real number and outputs its double. For this function, both the codomain and the image are the set of all real numbers, so the word range is unambiguous.

  6. Surjunctive group - Wikipedia

    en.wikipedia.org/wiki/Surjunctive_group

    A state transition function is a surjective function when every state has a predecessor (there can be no Garden of Eden). It is an injective function when no two states have the same successor. A surjunctive group is a group with the property that, when its elements are used as the cells of cellular automata, every injective transition function ...

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The above definition of a function is essentially that of the founders of calculus, Leibniz, Newton and Euler. However, it cannot be formalized, since there is no mathematical definition of an "assignment". It is only at the end of the 19th century that the first formal definition of a function could be provided, in terms of set theory.

  8. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and

  9. Section (category theory) - Wikipedia

    en.wikipedia.org/wiki/Section_(category_theory)

    Examples [ edit ] In the category of sets , every monomorphism ( injective function ) with a non-empty domain is a section, and every epimorphism ( surjective function ) is a retraction; the latter statement is equivalent to the axiom of choice .