When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A function f with variable x is continuous at the real number c, if the limit of (), as x tends to c, is equal to (). There are several different definitions of the (global) continuity of a function, which depend on the nature of its domain .

  3. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    The image of a function () is the set of all values of f when the variable x runs in the whole domain of f. For a continuous (see below for a definition) real-valued function with a connected domain, the image is either an interval or a single value. In the latter case, the function is a constant function.

  4. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    In other words, since the two one-sided limits exist and are equal, the limit of () as approaches exists and is equal to this same value. If the actual value of f ( x 0 ) {\displaystyle f\left(x_{0}\right)} is not equal to L , {\displaystyle L,} then x 0 {\displaystyle x_{0}} is called a removable discontinuity .

  5. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x 0 is a number in [a, b] such that f is continuous at x 0, then = is differentiable for x = x 0 with F′(x 0) = f(x 0). We can relax the conditions on f still further and suppose that it is merely locally integrable.

  6. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The function's integral is equal to over any set because the function is equal to zero almost everywhere. If G = { ( x , f ( x ) ) : x ∈ ( 0 , 1 ) } ⊂ R 2 {\displaystyle G=\{\,(x,f(x)):x\in (0,1)\,\}\subset \mathbb {R} ^{2}} is the graph of the restriction of f {\displaystyle f} to ( 0 , 1 ) {\displaystyle (0,1)} , then the box-counting ...

  7. Intermediate value theorem - Wikipedia

    en.wikipedia.org/wiki/Intermediate_value_theorem

    Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.

  8. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    In general, the modulus of continuity of a uniformly continuous function on a metric space needs to take the value +∞. For instance, the function f : N → R such that f(n) := n 2 is uniformly continuous with respect to the discrete metric on N, and its minimal modulus of continuity is ω f (t) = +∞ for any t≥1, and ω f (t) = 0 otherwise ...

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0.