Search results
Results From The WOW.Com Content Network
The function f is continuous at some point c of its domain if the limit of (), as x approaches c through the domain of f, exists and is equal to (). [9] In mathematical notation, this is written as = ().
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.
In other words, since the two one-sided limits exist and are equal, the limit of () as approaches exists and is equal to this same value. If the actual value of f ( x 0 ) {\displaystyle f\left(x_{0}\right)} is not equal to L , {\displaystyle L,} then x 0 {\displaystyle x_{0}} is called a removable discontinuity .
Approximately continuous functions are intimately connected to Lebesgue points. For a function f ∈ L 1 ( E ) {\displaystyle f\in L^{1}(E)} , a point x 0 {\displaystyle x_{0}} is a Lebesgue point if it is a point of Lebesgue density 1 for E {\displaystyle E} and satisfies
Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0.
Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x 0 is a number in [a, b] such that f is continuous at x 0, then = is differentiable for x = x 0 with F′(x 0) = f(x 0). We can relax the conditions on f still further and suppose that it is merely locally integrable.
The function f(x) = √ x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous, [8] and both Hölder continuous of class C 0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).
A continuous function fails to be absolutely continuous if it fails to be uniformly continuous, which can happen if the domain of the function is not compact – examples are tan(x) over [0, π/2), x 2 over the entire real line, and sin(1/x) over (0, 1]. But a continuous function f can