Search results
Results From The WOW.Com Content Network
In bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particular type of local bifurcation where the system transitions from one fixed point to three fixed points. Pitchfork bifurcations, like Hopf bifurcations , have two types – supercritical and subcritical.
If the eigenvalue is equal to one, the bifurcation is either a saddle-node (often called fold bifurcation in maps), transcritical or pitchfork bifurcation. If the eigenvalue is equal to −1, it is a period-doubling (or flip) bifurcation, and otherwise, it is a Hopf bifurcation. Examples of local bifurcations include: Saddle-node (fold) bifurcation
Symmetry breaking in pitchfork bifurcation as the parameter ε is varied. ε = 0 is the case of symmetric pitchfork bifurcation.. In a dynamical system such as ¨ + (;) + =, which is structurally stable when , if a bifurcation diagram is plotted, treating as the bifurcation parameter, but for different values of , the case = is the symmetric pitchfork bifurcation.
The buckling beam example from earlier is an example of a pitchfork bifurcation (perhaps more appropriately dubbed a "trifurcation"). The "ideal" pitchfork is shown on the left of Figure 7, given by = and r = 0 is where the bifurcation occurs, represented by the black dot at the origin of Figure 8.
In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems.
Diagram showing pitchfork bifurcation geometry given by a slice through cusp catastrophe. Date: 1 December 2005: Source: Created in OpenOffice Draw, exported as SVG, size explicitly added in text editor. Author: Jheald: SVG development
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Bifurcation diagram for the Rössler attractor for varying Here, a {\displaystyle a} is fixed at 0.2, c {\displaystyle c} is fixed at 5.7 and b {\displaystyle b} changes. As shown in the accompanying diagram, as b {\displaystyle b} approaches 0 the attractor approaches infinity (note the upswing for very small values of b {\displaystyle b} ).