Search results
Results From The WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
See also list of Fourier analysis topics and list of Fourier-related transforms, which are more directed towards the classical Fourier series and Fourier transform of mathematical analysis, mathematical physics and engineering.
These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.
Then the Fourier series of f converges at t to f(t). For example, the theorem holds with ω f = log −2 ( 1 / δ ) but does not hold with log −1 ( 1 / δ ) . Theorem (the Dini–Lipschitz test): Assume a function f satisfies
Spectrum continuation analysis (SCA) is a generalization of the concept of Fourier series to non-periodic functions of which only a fragment has been sampled in the time domain. Recall that a Fourier series is only suitable to the analysis of periodic (or finite-domain) functions f(x) with period 2π. It can be expressed as an infinite series ...