When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Bootstrapping (statistics) Bootstrapping is a procedure for estimating the distribution of an estimator by resampling (often with replacement) one's data or a model estimated from the data. [1] Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates. [2][3] This technique ...

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of probability with respect to a single theoretical (yet to be realized) sample: "There is a 95% probability that the 95% confidence interval calculated from a given future sample will cover the true value of the population parameter."

  4. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  5. Robust measures of scale - Wikipedia

    en.wikipedia.org/wiki/Robust_measures_of_scale

    A bootstrap calculation could be used to determine a confidence interval narrower than that calculated from σ, and so obtain some benefit from a large amount of extra work. These procedures are robust against procedural errors which are not modeled by the assumption that the balance has a fixed known standard deviation σ. In practical ...

  6. Pivotal quantity - Wikipedia

    en.wikipedia.org/wiki/Pivotal_quantity

    Pivotal quantity. In statistics, a pivotal quantity or pivot is a function of observations and unobservable parameters such that the function's probability distribution does not depend on the unknown parameters (including nuisance parameters). [1] A pivot need not be a statistic — the function and its 'value' can depend on the parameters of ...

  7. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    Jackknife resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size , a jackknife estimator can be built ...

  8. Passing–Bablok regression - Wikipedia

    en.wikipedia.org/wiki/Passing–Bablok_regression

    Passing–Bablok regression is a method from robust statistics for nonparametric regression analysis suitable for method comparison studies introduced by Wolfgang Bablok and Heinrich Passing in 1983. [1][2][3][4][5] The procedure is adapted to fit linear errors-in-variables models. It is symmetrical and is robust in the presence of one or few ...

  9. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and; as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.