Search results
Results From The WOW.Com Content Network
In the small-angle approximation, the motion of a simple pendulum is approximated by simple harmonic motion. The period of a mass attached to a pendulum of length l with gravitational acceleration g {\displaystyle g} is given by T = 2 π l g {\displaystyle T=2\pi {\sqrt {\frac {l}{g}}}}
The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...
The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion.The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as harmonics.
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
The divergence of the harmonic series was first proven in 1350 by Nicole Oresme. [2] [4] Oresme's work, and the contemporaneous work of Richard Swineshead on a different series, marked the first appearance of infinite series other than the geometric series in mathematics. [5] However, this achievement fell into obscurity. [6]
The motion is simple harmonic motion where θ 0 is the amplitude of the oscillation (that is, the maximum angle between the rod of the pendulum and the vertical). The corresponding approximate period of the motion is then
For continuous bodies these laws are called Euler's laws of motion. [ 7 ] The total body force applied to a continuous body with mass m , mass density ρ , and volume V , is the volume integral integrated over the volume of the body: