Search results
Results From The WOW.Com Content Network
Lambda (written λ, in lowercase) is a non-SI unit of volume equal to 10 −9 m 3, 1 cubic millimetre (mm 3) or 1 microlitre (μL). Introduced by the BIPM in 1880, [ 1 ] the lambda has been used in chemistry [ 2 ] and in law for measuring volume, but its use is not recommended.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
One of the criteria which determine whether a collection of charged particles can rigorously be termed an ideal plasma is that Λ ≫ 1.When this is the case, collective electrostatic interactions dominate over binary collisions, and the plasma particles can be treated as if they only interact with a smooth background field, rather than through pairwise interactions (collisions). [3]
The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...