Search results
Results From The WOW.Com Content Network
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.
The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent. A metric space is compact if and only if it is complete and totally bounded. A subset of Euclidean space R n is compact if and only if it is closed and
Bounded poset, a partially ordered set that has both a greatest and a least element; Bounded set, a set that is finite in some sense Bounded function, a function or sequence whose possible values form a bounded set; Bounded set (topological vector space), a set in which every neighborhood of the zero vector can be inflated to include the set
Following the rules of this construction, would have to be an upper bound of , contradicting property 2 of all sequences of nested intervals. In two steps, it has been shown that s {\displaystyle s} is an upper bound of A {\displaystyle A} and that a lower upper bound cannot exist.
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant.
Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces: