When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

  3. Parabolic reflector - Wikipedia

    en.wikipedia.org/wiki/Parabolic_reflector

    If the dish is symmetrical and made of uniform material of constant thickness, and if F represents the focal length of the paraboloid, this "focus-balanced" condition occurs if the depth of the dish, measured along the axis of the paraboloid from the vertex to the plane of the rim of the dish, is 1.8478 times F. The radius of the rim is 2.7187 F.

  4. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Hence, the coordinates can be used to solve these equations in geometries with paraboloidal symmetry, i.e. with boundary conditions specified on sections of paraboloids. The Helmholtz equation is ( ∇ 2 + k 2 ) ψ = 0 {\displaystyle (\nabla ^{2}+k^{2})\psi =0} .

  5. Parabolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_coordinates

    The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).

  6. Roman surface - Wikipedia

    en.wikipedia.org/wiki/Roman_surface

    Join the paraboloids y = xz and x = yz. The result is shown in Figure 1. Figure 1. The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines ...

  7. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007). The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry.

  8. 3D projection - Wikipedia

    en.wikipedia.org/wiki/3D_projection

    If the normal of the viewing plane (the camera direction) is parallel to one of the primary axes (which is the x, y, or z axis), the mathematical transformation is as follows; To project the 3D point , , onto the 2D point , using an orthographic projection parallel to the y axis (where positive y represents forward direction - profile view ...

  9. Parabolic cylindrical coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_cylindrical...

    The blue plane corresponds to z=2. These surfaces intersect at the point P (shown as a black sphere), which has Cartesian coordinates roughly (2, -1.5, 2). In mathematics , parabolic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional parabolic coordinate system in the ...