When.com Web Search

  1. Ads

    related to: foundations of geometry proof of care

Search results

  1. Results From The WOW.Com Content Network
  2. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Foundations of geometry is the study of geometries as axiomatic systems. ... If superposition is to be considered a valid method of geometric proof, all of geometry ...

  3. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    The Foundations of Geometry, 2nd ed. Chicago: Open Court. Laura I. Meikle and Jacques D. Fleuriot (2003), Formalizing Hilbert's Grundlagen in Isabelle/Isar Archived 2016-03-04 at the Wayback Machine , Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, Volume 2758/2003, 319-334, doi : 10.1007/10930755_21

  4. Myers's theorem - Wikipedia

    en.wikipedia.org/wiki/Myers's_theorem

    For a surface, the Gauss, sectional, and Ricci curvatures are all the same, but Bonnet's proof easily generalizes to higher dimensions if one assumes a positive lower bound on the sectional curvature. Myers' key contribution was therefore to show that a Ricci lower bound is all that is needed to reach the same conclusion.

  5. Category:Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Foundations_of...

    Pages in category "Foundations of geometry" The following 15 pages are in this category, out of 15 total. This list may not reflect recent changes. ...

  6. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    Hilbert's axioms for plane geometry number 16, and include Transitivity of Congruence and a variant of the Axiom of Pasch. The only notion from intuitive geometry invoked in the remarks to Tarski's axioms is triangle. (Versions B and C of the Axiom of Euclid refer to "circle" and "angle," respectively.) Hilbert's axioms also require "ray ...

  7. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]

  8. Hilbert's fourth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourth_problem

    In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...

  9. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Following Gottlob Frege and Bertrand Russell, Hilbert sought to define mathematics logically using the method of formal systems, i.e., finitistic proofs from an agreed-upon set of axioms. [4] One of the main goals of Hilbert's program was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem. [a]