Search results
Results From The WOW.Com Content Network
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y.
A function is surjective or onto if each element of the codomain is mapped to by at least one element of the domain. In other words, each element of the codomain has a non-empty preimage. Equivalently, a function is surjective if its image is equal to its codomain. A surjective function is a surjection. [1] The formal definition is the following.
The function f is surjective (or onto, or is a surjection) if its range () equals its codomain , that is, if, for each element of the codomain, there exists some element of the domain such that () = (in other words, the preimage () of every is nonempty).
Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.
For some functions, the image and the codomain coincide; these functions are called surjective or onto. For example, consider the function () =, which inputs a real number and outputs its double. For this function, both the codomain and the image are the set of all real numbers, so the word range is unambiguous.
Surjective function: has a preimage for every element of the codomain, that is, the codomain equals the image. Also called a surjection or onto function . Bijective function : is both an injection and a surjection , and thus invertible .
A faithful functor need not be injective on objects or morphisms. That is, two objects X and X′ may map to the same object in D (which is why the range of a full and faithful functor is not necessarily isomorphic to C), and two morphisms f : X → Y and f′ : X′ → Y′ (with different domains/codomains) may map to the same morphism in D.
A quotient space is defined as follows: if X is a topological space and Y is a set, and if f : X→ Y is a surjective function, then the quotient topology on Y is the collection of subsets of Y that have open inverse images under f. In other words, the quotient topology is the finest topology on Y for which f is continuous.