When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...

  3. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...

  4. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).

  5. Horizontal line test - Wikipedia

    en.wikipedia.org/wiki/Horizontal_line_test

    Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.

  6. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Surjective function: has a preimage for every element of the codomain, that is, the codomain equals the image. Also called a surjection or onto function. Bijective function: is both an injection and a surjection, and thus invertible. Identity function: maps any given element to itself. Constant function: has a fixed value regardless of its input.

  7. Commutative diagram - Wikipedia

    en.wikipedia.org/wiki/Commutative_diagram

    A proof by diagram chasing typically involves the formal use of the properties of the diagram, such as injective or surjective maps, or exact sequences. [5] A syllogism is constructed, for which the graphical display of the diagram is just a visual aid. It follows that one ends up "chasing" elements around the diagram, until the desired element ...

  8. Graph homomorphism - Wikipedia

    en.wikipedia.org/wiki/Graph_homomorphism

    Two graphs G and H are homomorphically equivalent if G → H and H → G. [4] The maps are not necessarily surjective nor injective. For instance, the complete bipartite graphs K 2,2 and K 3,3 are homomorphically equivalent: each map can be defined as taking the left (resp. right) half of the domain graph and mapping to just one vertex in the left (resp. right) half of the image graph.

  9. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    f is surjective: for each b in X there must be at least one a in N such that () =, thus each b will occur at least once in the image of f. (The condition "f is bijective" is only an option when =; but then it is equivalent to both "f is injective" and "f is surjective".)