When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:

  3. Automatic calculation of particle interaction or decay

    en.wikipedia.org/wiki/Automatic_calculation_of...

    Finally new theoretical models like the supersymmetry model (MSSM in its minimal version) predict a flurry of new processes. The automatic packages, once seen as mere teaching support, have become, this last 10 years an essential component of the data simulation and analysis suite for all experiments.

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

  5. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations , if S {\displaystyle S} is the current size, and d S d t {\displaystyle {\frac {dS}{dt}}} its growth rate, then relative growth rate is

  6. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation , where N is the quantity and λ ( lambda ) is a positive rate called the exponential decay constant , disintegration constant , [ 1 ] rate constant , [ 2 ] or ...

  7. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population.

  8. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  9. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.