Search results
Results From The WOW.Com Content Network
In some applications, such as in TDA, it is useful to have representatives of (co)homology classes that are as "small" as possible. This is known as the problem of (co)homology localization. On triangulated manifolds, given a chain representing a homology class, it is in general NP-hard to approximate the minimum-support homologous chain [17].
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
Edelsbrunner and Harer's book gives general guidance on computational topology. [19] One issue that arises in computation is the choice of complex. The Čech complex and the Vietoris–Rips complex are most natural at first glance; however, their size grows rapidly with the number of data points. The Vietoris–Rips complex is preferred over ...
Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space. Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most ...
A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following ...
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Also simply application or app. Computer software designed to perform a group of coordinated functions, tasks, or activities for the benefit of the user. Common examples of applications include word processors, spreadsheets, accounting applications, web browsers, media players, aeronautical flight simulators, console games, and photo editors. This contrasts with system software, which is ...