When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coordination number - Wikipedia

    en.wikipedia.org/wiki/Coordination_number

    The most common coordination number for d-block transition metal complexes is 6. The coordination number does not distinguish the geometry of such complexes, i.e. octahedral vs trigonal prismatic. For transition metal complexes, coordination numbers range from 2 (e.g., Au I in Ph 3 PAuCl) to 9 (e.g., Re VII in [ReH 9] 2−).

  3. d electron count - Wikipedia

    en.wikipedia.org/wiki/D_electron_count

    Stable complexes with this electron count are more common for first row (period four) transition metals center than they are for complexes based around second or third row transition metals centers. These include both four-coordinate 17-electron species and five-coordinate 19-electron species. Examples: Schweizer's reagent. d 10

  4. Z-order curve - Wikipedia

    en.wikipedia.org/wiki/Z-order_curve

    The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [5] [6] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [7] or they can be used to build a pointer based quadtree.

  5. Pauling's rules - Wikipedia

    en.wikipedia.org/wiki/Pauling's_rules

    For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.

  6. Coordination geometry - Wikipedia

    en.wikipedia.org/wiki/Coordination_geometry

    The coordination geometry depends on the number, not the type, of ligands bonded to the metal centre as well as their locations. The number of atoms bonded is the coordination number . The geometrical pattern can be described as a polyhedron where the vertices of the polyhedron are the centres of the coordinating atoms in the ligands.

  7. Ligand bond number - Wikipedia

    en.wikipedia.org/wiki/Ligand_bond_number

    Co(CO) 3 (NO) is a stable 18-electron complex in part due to the bonding of the NO ligand in its linear form. The donation of the lone pair on the nitrogen makes this complex ML 4 X, containing 18 electrons. The traditional coordination number here would be 4, while the CBC more accurately describes the bonding with a LBN of 5.

  8. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.

  9. Electron counting - Wikipedia

    en.wikipedia.org/wiki/Electron_counting

    An example of this complication is the M–NO entity. When this grouping is linear, the NO ligand is considered to be a three-electron ligand. When the M–NO subunit is strongly bent at N, the NO is treated as a pseudohalide and is thus a one electron (in the neutral counting approach).