When.com Web Search

  1. Ad

    related to: graph neural network models

Search results

  1. Results From The WOW.Com Content Network
  2. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Graph attention network is a combination of a graph neural network and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data. A multi-head GAT layer can be expressed as follows:

  3. Erdős–Rényi model - Wikipedia

    en.wikipedia.org/wiki/Erdős–Rényi_model

    In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi , who introduced one of the models in 1959.

  4. Barabási–Albert model - Wikipedia

    en.wikipedia.org/wiki/Barabási–Albert_model

    The Barabási–Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. Several natural and human-made systems, including the Internet, the World Wide Web, citation networks, and some social networks are thought to be approximately scale-free and certainly contain few nodes (called hubs) with unusually high degree as compared to ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  6. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    This class of models leverages the use of recurrent neural network. [5] The advantage of this architecture is to memorize a sequence of fact, rather than just elaborate single events. [40] RSN: [40] During the embedding procedure is commonly assumed that, similar entities has similar relations. [40]

  7. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    This type of graphical model is known as a directed graphical model, Bayesian network, or belief network. Classic machine learning models like hidden Markov models , neural networks and newer models such as variable-order Markov models can be considered special cases of Bayesian networks.

  8. Stochastic block model - Wikipedia

    en.wikipedia.org/wiki/Stochastic_block_model

    The stochastic block model is a generative model for random graphs. This model tends to produce graphs containing communities, subsets of nodes characterized by being connected with one another with particular edge densities. For example, edges may be more common within communities than between communities.

  9. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent . Such networks are commonly depicted in the manner shown at the top of the figure, where f {\displaystyle \textstyle f} is shown as dependent upon itself.