Ad
related to: area of oblique triangles calculator with points and lines
Search results
Results From The WOW.Com Content Network
The area within any closed curve, such as a triangle, is given by the line integral around the curve of the algebraic or signed distance of a point on the curve from an arbitrary oriented straight line L. Points to the right of L as oriented are taken to be at negative distance from L, while the weight for the integral is taken to be the ...
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.
The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated within a unique flat plane.
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
Heron triangles have integer sides and integer area. The oblique Heron triangle with the smallest perimeter is acute, with sides (6, 5, 5). The two oblique Heron triangles that share the smallest area are the acute one with sides (6, 5, 5) and the obtuse one with sides (8, 5, 5), the area of each being 12.
Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
Let be twice the area between the axis and a ray through the origin intersecting the unit hyperbola, and define (,) = (, ) = (,) as the coordinates of the intersection point. Then the area of the hyperbolic sector is the area of the triangle minus the curved region past the vertex at (,): = = ( (+)), which simplifies to the area ...