When.com Web Search

  1. Ad

    related to: function power series calculator differential equations

Search results

  1. Results From The WOW.Com Content Network
  2. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.

  3. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    The solution () / has a power series starting with the power zero. In a power series starting with the recurrence relation places no restriction on the coefficient for the term , which can be set arbitrarily. If it is set to zero then with this differential equation all the other coefficients will be zero and we obtain the solution 1/z.

  4. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!

  5. E-function - Wikipedia

    en.wikipedia.org/wiki/E-function

    A power series with coefficients in the field of algebraic numbers = =! ¯ [[]]is called an E-function [1] if it satisfies the following three conditions: . It is a solution of a non-zero linear differential equation with polynomial coefficients (this implies that all the coefficients c n belong to the same algebraic number field, K, which has finite degree over the rational numbers);

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.

  7. Confluent hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Confluent_hypergeometric...

    Since Kummer's equation is second order there must be another, independent, solution. The indicial equation of the method of Frobenius tells us that the lowest power of a power series solution to the Kummer equation is either 0 or 1 − b. If we let w(z) be = then the differential equation gives

  8. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The particular form of the Jacobi-type continued fractions (J-fractions) are expanded as in the following equation and have the next corresponding power series expansions with respect to z for some specific, application-dependent component sequences, {ab i} and {c i}, where z ≠ 0 denotes the formal variable in the second power series ...

  9. Hermite polynomials - Wikipedia

    en.wikipedia.org/wiki/Hermite_polynomials

    Since the power-series coefficients of the exponential are well known, and higher-order derivatives of the monomial x n can be written down explicitly, this differential-operator representation gives rise to a concrete formula for the coefficients of H n that can be used to quickly compute these polynomials.