When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    It had one sign bit, a 15-bit exponent and 112-fraction bits, however the layout in memory was significantly different from IEEE quadruple precision and the exponent bias also differed. Only a few of the earliest VAX processors implemented H Floating-point instructions in hardware, all the others emulated H Floating-point in software.

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  4. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The sum of the exponent bias (127) and the exponent (1) is 128, so this is represented in the single-precision format as 0 10000000 10010010000111111011011 (excluding the hidden bit) = 40490FDB [27] as a hexadecimal number. An example of a layout for 32-bit floating point is and the 64-bit ("double") layout is similar.

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".

  7. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  8. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    where s is the sign of the exponent (either 0 or 1), E is the unbiased exponent, which is an integer that ranges from 0 to 1023, and M is the significand which is a 53-bit value that falls in the range 1 ≤ M < 2 . Negative numbers and zero can be ignored because the logarithm of these values is undefined.

  9. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Namely, an attacker observing the sequence of squarings and multiplications can (partially) recover the exponent involved in the computation. This is a problem if the exponent should remain secret, as with many public-key cryptosystems. A technique called "Montgomery's ladder" [2] addresses this concern.