Search results
Results From The WOW.Com Content Network
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of open and closed are antonyms, but their mathematical definitions are not mutually exclusive .
Though the subspace topology of Y = {−1} ∪ {1/n } n∈N in the section above is shown not to be generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is open ...
A subset A of a continuum X such that A itself is a continuum is called a subcontinuum of X. A space homeomorphic to a subcontinuum of the Euclidean plane R 2 is called a planar continuum. A continuum X is homogeneous if for every two points x and y in X, there exists a homeomorphism h: X → X such that h(x) = y.
In the mathematical field of order theory, a continuum or linear continuum is a generalization of the real line.. Formally, a linear continuum is a linearly ordered set S of more than one element that is densely ordered, i.e., between any two distinct elements there is another (and hence infinitely many others), and complete, i.e., which "lacks gaps" in the sense that every nonempty subset ...
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.
The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces R n can be given a topology.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
Let be the least uncountable ordinal.In an analog of Baire space derived from the -fold cartesian product of with itself, any closed set is the disjoint union of an -perfect set and a set of cardinality, where -closedness of a set is defined via a topological game in which members of are played.