When.com Web Search

  1. Ad

    related to: linear fractional function graph

Search results

  1. Results From The WOW.Com Content Network
  2. Linear fractional transformation - Wikipedia

    en.wikipedia.org/wiki/Linear_fractional...

    Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an isometry of the hyperbolic plane metric space. Since Henri Poincaré explicated these models they have been named after him: the Poincaré disk model and the Poincaré half-plane model.

  3. Linear-fractional programming - Wikipedia

    en.wikipedia.org/wiki/Linear-fractional_programming

    In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear ...

  4. Pseudoconvex function - Wikipedia

    en.wikipedia.org/wiki/Pseudoconvex_function

    A pseudolinear function is a function that is both pseudoconvex and pseudoconcave. [4] For example, linear–fractional programs have pseudolinear objective functions and linear–inequality constraints. These properties allow fractional-linear problems to be solved by a variant of the simplex algorithm (of George B. Dantzig). [5] [6] [7]

  5. Real projective line - Wikipedia

    en.wikipedia.org/wiki/Real_projective_line

    The automorphisms of a real projective line are called projective transformations, homographies, or linear fractional transformations. They form the projective linear group PGL(2, R ). Each element of PGL(2, R ) can be defined by a nonsingular 2×2 real matrix, and two matrices define the same element of PGL(2, R ) if one is the product of the ...

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  7. Fractional programming - Wikipedia

    en.wikipedia.org/wiki/Fractional_programming

    In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    The fractional part function has Fourier series expansion [19] {} = = ⁡ for x not an integer. At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given ...

  9. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    The computation of the Hausdorff dimension of the graph of the classical Weierstrass function was an open problem until 2018, while it was generally believed that = + ⁡ <. [ 6 ] [ 7 ] That D is strictly less than 2 follows from the conditions on a {\textstyle a} and b {\textstyle b} from above.