Ad
related to: linear fractional function graph
Search results
Results From The WOW.Com Content Network
Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an isometry of the hyperbolic plane metric space. Since Henri Poincaré explicated these models they have been named after him: the Poincaré disk model and the Poincaré half-plane model.
In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear ...
A pseudolinear function is a function that is both pseudoconvex and pseudoconcave. [4] For example, linear–fractional programs have pseudolinear objective functions and linear–inequality constraints. These properties allow fractional-linear problems to be solved by a variant of the simplex algorithm (of George B. Dantzig). [5] [6] [7]
The automorphisms of a real projective line are called projective transformations, homographies, or linear fractional transformations. They form the projective linear group PGL(2, R ). Each element of PGL(2, R ) can be defined by a nonsingular 2×2 real matrix, and two matrices define the same element of PGL(2, R ) if one is the product of the ...
More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.
In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.
The fractional part function has Fourier series expansion [19] {} = = for x not an integer. At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given ...
The computation of the Hausdorff dimension of the graph of the classical Weierstrass function was an open problem until 2018, while it was generally believed that = + <. [ 6 ] [ 7 ] That D is strictly less than 2 follows from the conditions on a {\textstyle a} and b {\textstyle b} from above.