When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius is given as =, where G is the gravitational constant, M is the object mass ... Human: 70 kg 1.04 ...

  3. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

  4. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.

  5. Karl Schwarzschild - Wikipedia

    en.wikipedia.org/wiki/Karl_Schwarzschild

    Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ⓘ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity.

  6. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.

  7. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius R of the gravitating body, there is no problem as long as R > r s. For ordinary stars and planets this is always the case. For example, the radius of the Sun is approximately 700 000 km, while its Schwarzschild radius is only 3 km.

  8. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the Sun, this radius is approximately 3 kilometers (1.9 miles); for Earth, it is

  9. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, ... is the standard Riemannian metric on the unit radius 2-sphere.