When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trailing zero - Wikipedia

    en.wikipedia.org/wiki/Trailing_zero

    However, trailing zeros may be useful for indicating the number of significant figures, for example in a measurement. In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n.

  3. Find first set - Wikipedia

    en.wikipedia.org/wiki/Find_first_set

    A nearly equivalent operation is count trailing zeros (ctz) or number of trailing zeros (ntz), which counts the number of zero bits following the least significant one bit. The complementary operation that finds the index or position of the most significant set bit is log base 2 , so called because it computes the binary logarithm ⌊log 2 (x ...

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials. Daniel Bernoulli and Leonhard Euler interpolated the factorial function to a continuous function of complex numbers, except at the negative integers, the (offset) gamma function.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Consider the problem of finding the positive number x with cos x = x 3. We can rephrase that as finding the zero of f(x) = cos(x) − x 3. We have f ′ (x) = −sin(x) − 3x 2. Since cos(x) ≤ 1 for all x and x 3 > 1 for x > 1, we know that our solution lies between 0 and 1.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding

  7. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    Another way to see this is to rename h 1 to h i, where the derangement is more explicit: for any j from 2 to n, P j cannot receive h j. P i receives h 1. In this case the problem reduces to n − 2 people and n − 2 hats, because P 1 received h i ' s hat and P i received h 1 's hat, effectively putting both out of further consideration.

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.

  9. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for